1 /* 2 矩阵快速幂:求第n项的Fibonacci数,转置矩阵都给出,套个模板就可以了。效率很高啊 3 */ 4 #include5 #include 6 #include 7 #include 8 using namespace std; 9 10 const int MAXN = 1e3 + 10;11 const int INF = 0x3f3f3f3f;12 const int MOD = 10000;13 struct Mat {14 int m[2][2];15 };16 17 Mat multi_mod(Mat a, Mat b) {18 Mat ret; memset (ret.m, 0, sizeof (ret.m));19 for (int i=0; i<2; ++i) {20 for (int j=0; j<2; ++j) {21 for (int k=0; k<2; ++k) {22 ret.m[i][j] = (ret.m[i][j] + a.m[i][k] * b.m[k][j]) % MOD;23 }24 }25 }26 return ret;27 }28 29 int matrix_pow_mod(Mat x, int n) {30 Mat ret; ret.m[0][0] = ret.m[1][1] = 1; ret.m[0][1] = ret.m[1][0] = 0;31 while (n) {32 if (n & 1) ret = multi_mod (ret, x);33 x = multi_mod (x, x);34 n >>= 1;35 }36 return ret.m[0][1];37 }38 39 int main(void) { //POJ 3070 Fibonacci40 int n;41 while (scanf ("%d", &n) == 1) {42 if (n == -1) break;43 Mat x;44 x.m[0][0] = x.m[0][1] = x.m[1][0] = 1; x.m[1][1] = 0;45 printf ("%d\n", matrix_pow_mod (x, n));46 }47 48 return 0;49 }